Nonlinear Trading Models Through Sharpe Ratio Maximization

نویسندگان

  • Mark Choey
  • Andreas S. Weigend
چکیده

While many trading strategies are based on price prediction, traders in financial markets are typically interested in optimizing risk-adjusted performance such as the Sharpe Ratio, rather than the price predictions themselves. This paper introduces an approach which generates a nonlinear strategy that explicitly maximizes the Sharpe Ratio. It is expressed as a neural network model whose output is the position size between a risky and a risk-free asset. The iterative parameter update rules are derived and compared to alternative approaches. The resulting trading strategy is evaluated and analyzed on both computer-generated data and real world data (DAX, the daily German equity index). Trading based on Sharpe Ratio maximization compares favorably to both profit optimization and probability matching (through cross-entropy optimization). The results show that the goal of optimizing out-of-sample risk-adjusted profit can indeed be achieved with this nonlinear approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process

This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...

متن کامل

An Algorithm for Trading and Portfolio Management Using Q-learning and Sharpe Ratio Maximization

A trading and portfolio management system called QSR is proposed. It uses Q-learning and Sharpe ratio maximization algorithm. We use absolute proot and relative risk-adjusted proot as performance function to train the system respectively, and employ a committee of two networks to do the testing. The new proposed algorithm makes use of the advantages of both parts and can be used in a more gener...

متن کامل

Performance Functions and Reinforcement Learning for Trading Systems and Portfolios

We propose to train trading systems and portfolios by optimizing objective functions that directly measure trading and investment performance. Rather than basing a trading system on forecasts or training via a supervised learning algorithm using labelled trading data, we train our systems using recurrent reinforcement learning (RRL) algorithms. The performance functions that we consider for rei...

متن کامل

Particle Swarm Optimization of Bollinger Bands

The use of technical indicators to derive stock trading signals is a foundation of financial technical analysis. Many of these indicators have several parameters which creates a difficult optimization problem given the highly non-linear and non-stationary nature of a financial timeseries. This study investigates a popular financial indicator, Bollinger Bands, and the fine tuning of its paramete...

متن کامل

Reinforcement Learning for Trading

We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results that demonstrate the advantages of reinforcement learning relative to supervised ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 1997